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The HEAT code represents an evolving effort to quantify heat flow in and around magma bodies in order to 
better understand geothermal gradients in volcanic areas. As such the following documentation is also evolving. 
First the more analytical approaches are reviewed and their limitations in handling real-world effects of multiple 
dimensions, latent heat, and convection are mentioned. Then the numerical approach used in the HEAT code 
is discussed. At present, the code is in 2-D form but it will be expanded to 3-D. Users should keep in mind 
the potential affects of representing 3-D magma bodies in 2-D form, the general result being maximum cooling 
times being predicted. 
 
 
1. Analytical Approach 
 
Analytical Theory. Assuming that the magma is emplaced instantaneously and that it experiences no further 
movement nor loss or gain of mass, the cooling and heat transfer is governed by conservation of energy: 
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where T is temperature, t is time, κ is thermal diffusivity, u is the magma convective velocity vector, and q 
represents heat sources and sinks. This equation describes the change of temperature with time (left-hand-
side; LHS) with the right-hand-side (RHS) summing the effects of thermal conductivity (first term), thermal 
convection (second term), heat sources and sinks (third term). Given the height of the drift as 5.5 m, one may 
show by consideration of the magnitude of the thermal Rayleigh number that magma convection will not occur 
within the drift. Secondly I assume that there are no heat sinks or source other than latent heat of magma 
crystallization. 
 
 To start the analysis, assume that there is no latent heat released during magma crystallization and no 
thermal property contrasts between the magma and tuff. First consider the case for 1-D cartesian coordinates, 
such that the drift is represented by a slab of a finite thickness but of infinite length and width. These 
assumptions allow a 1-D expression of Eq. (1) as: 
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for which x represents distance measured perpendicular to the surface of the slab. Analytical solution of Eq. 
(2) for geological systems has most commonly been achieved by assuming self-similarity of solutions (Carslaw 
and Jaeger, 1947) in which temperature is expressed non-dimensionally as θ: 
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for which subscripts m and 0 refer to the initial temperature of the magma and tuff, respectively. A single 
similarity variable, η, can be defined that combines both temporal as spatial effects, and it is defined as the 
ratio of distance to twice the characteristic thermal diffusion distance: 
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Rewriting Eq. (2) using non-dimensional temperature, θ, and the similarity variable, ξ, requires derivation of θ 
with respect to t and x in terms of η and reduces Eq. (2) from a partial differential equation to an ordinary 
differential equation: 
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In order to solve Eq. (5), one may define a variable ϕ = dθ/dη so that Eq. (5) becomes: 
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With Integration and exponentiation Eq. (6), one can show: 
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in which c is a constant of integration. Considering the boundary between a magma and rock where η = 0, 
θ(0) ≡ 1/2 , integration of Eq. (7) yields: 
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for which n is an arbitrary integration variable. For the boundary condition θ(∞) = 0: 
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For n ≥ 0 the definite integral in Eq. (9) is equal to π1/2/2, and the constant c = -(2/π1/2)/2 so that 
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For n ≤ 0, c = (2/π1/2)/2 and recalling that erf(-η) = -erf(η) the solution is: 
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 Jaeger (1968) defines a problem for cooling of a sheet-like magma body of thickness, 2a, intruded 
beneath deep cover, for which the x-axis origin is defined at the center of the sheet. For this problem θ must 
be evaluated away from both surfaces of the sheet (x-a and x+a), and because the solution Eqs. (10a and 
10b) are linear they can be summed: 
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Multiple Dimensions. The above equations are valid only in 1-D, which does not adequately model a drift 
of circular cross-section and a finite length. Consider the 3-D form of Eq. (2), expressed in cartesian 
coordinates:  
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Carslaw and Jaeger (1959) show the solution to Eq. (12) is similar to that of Eq. (11) but with added terms 
for the extra dimensions: 
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for which a = the half-height, b = the half-width, c = the half-length of the drift. Eq. (12) can be expressed 
using cylindrical coordinates with radial distance, r, azimuth φ, and length, z: 
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Cylindrical coordinates allows simplifying a 3-D problem to 2-D by assuming radial symmetry about the z-axis 
such that ∂ 2T/∂φ 2 = 0. Furthermore, if the heat source (magma body) can be represented by a cylinder 
whose length is much greater than its diameter (such as a conduit) then ∂ 2T/∂ z2 vanishes for radial solutions 
midway along the cylinder at all times earlier than the z-coordinate diffusive time; this time can be easily 



determined for the value of the last term of Eq. (13), which is within 0.001% of unity for erf(n) where n ≥ π . 
Letting n ≥ c/[2(κt)1/2] ≥ π , then t ≤ = c2/4π2κ . For example, a conduit of half-length c = 500 m and κ = 
0.0000004 m2/s requires 500 years of cooling before the effects of the z axis begin to appear. With this 
consideration Eq. (14) is suitably expressed: 
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From Carslaw and Jaeger [1959, §2.2(9)], the solution of Eq. (15) is that of an infinite cylinder where ω = the 
cylinder radius and from Carslaw and Jaeger’s x-coordinate is replaced by r and their y-coordinate is set to 
zero (z = 0): 
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Latent Heat and Thermal Property Contrasts. Addressing the issue of contrasting thermal properties 
between the magma and host rock, Delaney (1987) shows from work by Lovering (1936) the initial contact 
temperature as: 
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for which the subscripts m and t refer to the magma and tuff respectively. However, Delaney (1987) finds that 
although thermal property contrasts affect the maximum temperature achieved in the host rock (tuff in this 
case), they do not have large influence over solutions at late times. In fact Delaney (1987) points out that most 
workers do not consider thermal property contrasts.  
 
 The effect of latent heat (L) production is not negligible, but as Delaney (1987) points out, there is no 
analytically exact method to include its effects. Assuming L = 350 kJ/kg, a first approximation of its effect is 
find an effective initial magma temperature, T*m, by adding to the temperature of the magma the amount L/cm 
(L/cm = 350 kJ kg-1/1.2 kJ kg-1 K-1 = 292°C). Delaney (1987) finds that setting T*m = Tm + L/cm provides for 
adequate solutions for temperatures in host rocks at a distance of more than a quarter of a dike thickness 
away from the contact.  
 
 The main problem with the approximate approach for including the effect of latent heat is that 
temperature profiles within and near the magma-filled drift are not realistic and are too high. A more physically 
accurate method to account for latent heat is discussed by Turcotte and Schubert (1982); they follow the 
classical Stefan problem in which the cooling of a body of magma has a definite solidification temperature, Ts = 
Tm. Considering a 1-D case (slab-like geometry) and a magma intruded at x < 0, the solidification surface 
occurs at Xs: 
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for which λ is a constant to be determined. With this approach, one needs a solution that fits the conditions 
that θ = 1 (T = Tm = Ts) where x = Xs. The solution implies that the temperature at any point, defined by η 
[from Eq. (4)] is proportional to the position of the solidification surface defined by λ: 
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For x ≤ Xs T = Tm, and for Xs < x < 0, Tm > T > Tt. This solution is valid only for times at which latent heat is 
being released in the magma (i.e., the temperature at the hottest part of the magma, the center of the drift, is 
above the magma’s solidus temperature). 
 
 Because Ts = Tm, solidification occurs immediately during cooling from Tm, releasing latent heat at a 
rate ρL(dxm/dt)δt, and by equating this rate with the rate of heat conduction by Fourier’s law gives: 
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The derivative on the left-hand-side of Eq. (20) can be found by differentiating Eq. (18): 
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The derivative on the right-hand-side of Eq. (20) can be found by differentiating Eq. (19): 
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A transcendental equation of λ is given by substituting Eqs. (21) and (22) into Eq. (20) and recalling that k = 
ρcκ: 
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 With Eqs. (19 and 23), temperatures in time an space can be calculated for 1-D problems that involve 
release of latent heat. Furthermore, Eq. (18) can be used to calculate the time for all the magma to solidify 
(i.e., when the solidification surface reaches the center of the slab and Xs

2 = a2 where a is the slab half-
thickness). The solidification time is a function of one-quarter of the area a2:  
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Considering cylindrical geometry, the area expressed by the term, a2, in Eq. (24) becomes πa2/4. Replacing 
the cartesian position of the solidification surface by its cylindrical equivalent, Rs, Eq. (18) becomes: 
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and, the transcendental equation for λ is 
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 For given values of L, c, Tm, and T0, λ can be found by iteratively calculating the right-hand-side of 
Eq. (26) until it equals the left-hand-side. For a system where r is 0 at the contact between magma and host 
rock and increases towards the center of the magma body, the following solutions depend upon the value of 
Rs, which is a function of λ. 
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As Carslaw and Jaeger (1959) point out, there is no exact solution for a cylinder beyond its radius. Eq. (28) 
takes into account the cylindrical geometry in the same fashion as Eq. (16). As such, this solution is 
approximate, but comparisons of its calculated results with those from Eq. (16) show remarkable similarity, as 
will be discussed later. The solutions are valid for early-times when liquid magma (above its solidus) exists. 
The full solidification time occurs when the solidification surface, Rs, reaches the center of the magma heat 
source, and it is interesting to note that calculated maximum magma temperatures at this point in time can be 
very close to realistic solidus temperatures, even though they are not included in Eq. (26) 
 
 Because magma solidifies over a range of temperatures (Ts < Tm) and displays a small but finite 
contrast in thermal properties with tuff, one can follow the more complicated analysis of Carslaw and Jaeger 
(1959). For conditions where the conductivity of liquid and solid magma equal (km = ks), the transcendental 
equation in λ from Carslaw and Jaeger (1959) can be modified for cylindrical geometry and property 
contrasts [cf. Carslaw and Jaeger (1959) §2.16(42) and §11.2(42): 
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Eq. (30) account for the effects of latent heat by the variable p, which is the square-root of the ratio of 
diffusivities (κ) of the solid (subscript s) and liquid (subscript m). The magma diffusivity reflects the effect of a 
higher effective heat capacity from the addition of latent heat:  
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The effect of property contrasts between the magma and tuff in Eq. (30) are accounted for by the variable, σ: 
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The solutions temperature are like those in Eqs. (27-29) and depend upon the temporal radial position of the 
cooling surface, Rs. 
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mTT =  (r ≥ Rs) (34) 
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 Again the effect of cylindrical divergence is accounted for as in Eq. (28). Eqs. (30-36) take into 
account latent heat being released between Tm and Ts (solidus temperature) as well as property contrasts 
between the magma (subscript m) and tuff (subscript t). Compared to the calculation for latent heat where Ts 
= Tm, the effect of Ts < Tm generally increases the length of time for complete solidification by ~20% (without 
property contrasts) to 200% (with property contrasts).  
 
 
2. Numerical Approach 
 



 The HEAT code solves heat flow by finite difference solution of energy and momentum conservation 
equations (i.e., Navier-Stokes) thereby getting around many of the problems and limitations of analytical 
approaches discussed above. These equations express heat transfer by conduction and convection with 
nonlinearities arising from variation of thermal conductivity in a non-isotropic (heterogeneous) material and heat 
sources/sinks (e.g., latency). Natural convection involves not only convection within magmatic bodies but also 
within saturated permeable rock. The Boussinesq approximation and its importance in stating the Navier-
Stokes equations is first presented in a general form. Then in geophysical applications, momentum 
conservation by Darcy’s equation is employed because of its empirical success. Finally, discretization of the 
nonlinear partial differential equations involved is shown for the conductive, convective, and heat source terms 
of the energy conservation equation. 
 
General. In the Boussinesq approximation, variations in ρ are ignored, except insofar as they give rise to a 
gravitational force. The continuity equation of fluid flow then becomes  
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The derivative term can also be rewritten  
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The gravity force is  
 

gF ρ=  , (39) 
 
where gravity is given by the gravitational potential  
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and  
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The force due to gravity can then be rewritten  
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since  
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Now, let  
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The Navier-Stokes equations are the fundamental partial differentials equations that describe the flow of 
incompressible fluids. Using the rate of stress and rate of strain tensors, it can be shown that the components 
Fj of a viscous force F in a nonrotating frame are given by momentum conservation 
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where η is the dynamic viscosity, λ is the bulk viscosity, also called the second viscosity coefficient (Tritton 
1989), ∇⋅u is the divergence, and Einstein summation has been used to sum over j = 1, 2, and 3. Now, for an 
incompressible fluid, the divergence ∇⋅u = 0, so the λ term drops out. 
 
Fi consists of Fv (viscous force), Fp (pressure force), and Fb (body force), where 
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The Navier-Stokes equation for flow then becomes  
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Linearize ∆ρ with temperature using the thermal expansion coefficient α  
 

T∆−=∆ 0αρρ  (47) 
 
And divide by ρ0 , remembering that kinematic viscosity is υ = η/ρ  to obtain momentum conservation: 
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With the addition of an equation for temperature, this will complete the Boussinesq equations. Let H be the 
conductive heat flux and J be the heat generated per unit volume.  
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Energy conservation is expressed as 
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where cp is the constant pressure heat capacity such that with division by ρ cp we get 
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Equations (1)-(14) are the Boussinesq convection equations. The terms in these equations are given the 
following names where -g∆T is the buoyancy force, k∇2 T is the heat conduction term, J/(ρ cp) is the heat 
generation term, and u⋅∇T is the advection term. If the buoyancy force is the sole cause of motion, the 
convection is termed free convection. If the buoyancy force is negligible, the convection is termed forced 
convection.  
 
Expanding the full derivatives, defining the thermal diffusivity κ ≡ k/ρCp, and setting q = J/ρCp the Boussinesq 
convection equations are for momentum and continuity 
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and for energy conservation 
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Geophysical Application. Conductive and convective energy transfer are specified in Eq. (53), and for 
water-saturated porous rock, u can be calculated while conserving momentum with the Darcy equation: 
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where µ is the permeability, η is the fluid dynamic viscosity (viscous forces), ∇p is the fluid pressure gradient 
(buoyancy), and Fb is the hydrostatic (body) force. Now let’s consider the balance of the buoyant force and 
body force inside the brackets of Eq. (54). For the hydrostatic case pressure acts downward: 
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The fluid pressure gradient is related to a change in density with temperature [Eqs. (42) and (47)] by: 
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so that for upward convection to occur, the buoyant force must exceed the body force 
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Then Eq. (54) becomes 
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So permeability and thermal conductivity are important factors is determining heat flow in porous media, but 
the conductivity is affected by the presence of fluid saturated pores such that an effective conductivity ke must 
be considered: 
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where subscripts w and r refer to water and rock, respectively, and n is the porosity. Also thermal 
conductivity varies with temperature and pressure, and the following relationship from Chapman and Furlong 
(1991) expresses that variation: 
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Where convection will occur can be determined by the value of the system’s thermal Rayleigh number, a ratio 
of buoyant and viscous forces: 
 

k
THg

Ra
η

α ∆
=

3

 , (61) 

 
where H is a the height of the fluid system. In general where Ra > 1000 to 2000 convection will occur. For a 
fully saturated aquifer where the system length scale is determined by a network of pores, permeability is an 
important limitation, Ra may be expressed as: 
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convection will set in where 
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For magmas convection can be represented as occurring in a vertical pipe driven by the pressure gradient, and 
Eq. (58) can be replaced by the Poiseuille equation for viscous flow: 
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in which r is the effective pipe radius and L is the distance over which a fluid pressure gradient exists. Magmas 
below their liquidus temperature are multiphase materials dominated by the liquid and crystals, the former of 
which is lighter than the latter. During convection because of density contrasts, Stokes flow exists and the 
liquid moves past the crystals to some degree, resulting in crystal settling. This phenomena is strongly 
temperature dependent such that during cooling as the solidus temperature is approached, the fraction of liquid 
present decreases and the network of inter-crystal passage ways becomes more restrictive, adding a kind of 
permeability effect. Thus one can view liquid convection in magma impeded by crystals; thus, the value of 
r2/(8L) in Eq. (64) can be replaced by a temperature-dependent expression of liquid permeability as a function 
of solid-fraction porosity.  
 
Method for Numerical Solution of Conductive Heat Flow. Starting with the differential equation for heat 
conduction only, which is of parabolic form: 
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expand derivatives in 3-D Cartesian coordinates: 
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or alternatively in 3-D cylindrical coordinates: 
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Heat3D uses 3-D Cartesian coordinates. An explicit forward time-centered space (FTCS) scheme is the 
simplest numerical approach, is a first-order approximation, and is inherently stable (Crank, 1956); however, 
an explicit Dufort-Frankel scheme is a second-order approximation and unconditionally stable, and an implicit 
Crank-Nicholson scheme is also unconditionally stable and should provide a somewhat faster solutions. For 
this study, I demonstrate the FTCS and Dufort-Frankel methods. 
 



The finite difference solution requires discretization of derivatives following general rules (e.g., Differentiated 
Stirling approximation); for example for fictitious quantity A: 
 
dA/dx = ∆A/∆x = [A(j+1) – A(j-1)] / 2∆x . (67) 
 
and 
 
dA2/dx2 = ∆ (∆A/∆x)/ ∆x  = { [A(j+1) – A(j)] / 2x }- [A(j) – A(j-1)] / 2x }/x 
    = [ A(j+1) - 2 A(j) + A(j-1) ] / ∆x2.     (68) 
 
For simplicity, I use the following notation: 
 
  Tn = forward time temperature To = backward time temperature 
  κx = κx(i, j) κx1 = κx(i, j-1)  κx2 = κx(i, j+1) 
  T = T(i, j) Tx1 = Tx(i, j-1)  Tx2 = Tx(i, j+1) 
 
  κy = κy(i, j) κy1 = κy(i-1, j)  κy2 = κy(i+1, j) 
  Ty1 = Ty(i-1, j) Ty2 = Ty(i+1, j)       (69) 
 
Using cell-averaged values for coefficients of derivatives:  
 
 A(j-1) = [A(j-1) + A(j)]/2  A(j+1) = [A(j+1) + A(j)]/2 
 A(j) = [A(j-1) + A(j+1)]/2 = [A(j-1) + 2A(j) + A(j+1)]/4     (70) 
 
(Tn – T) / [ ∆t] = [ (κx2 - κx1) / (2∆x) ] [ (Tx2 - Tx1) / (2∆x) ] 
  + [ (κy2 - κy1) / (2∆y) ] [ (Ty2 - Ty1) / (2∆y) ] 
  + [ (κz2 – κz1) / (2∆z) ] [ (Tz2 – Tz1) / (2∆z) ] 
  + [ Tx1(κx1 + κx) /2 - 2Tx (κx1 + 2κx +κx2) /4 + Tx2(κx + κx2) /2 ] / (∆x2) 
  + [ Ty1(κy1 + κy) /2 - 2Ty (κy1 + 2κy +κy2) /4 + Ty2 (κy + κy2)/2 ] / (∆x2) 
  + [ Tz1(κz1 + κz) /2 - 2Tz (κz1 + 2κz +κz2) /4 + Tz2 (κz + κz2)/2 ] / (∆x2)  (71) 
 
For ∆x = ∆y = ∆z 
Tn - T = [∆t / (∆x  2) ] [(κx2Tx2 - κx2Tx1 - κx1Tx2 + κx1Tx1 )/4 ] 
 + [∆t / (∆x  2) ] [(κy2Ty2 - κy2Ty1 - κy1Ty2 + κy1Ty1 )/4] 
 + [∆t / (∆x  2) ] [(κz2Tz2 – κz2Tz1 – κz1Tz2 + κz1Tz1 )/4] 
 + [∆t / (∆x  2) ] [(κx1Tx1 + κxTx1)/2 - 2(κx1Tx + 2κxTx + κx2Tx)/4 + (κxTx2 + κx2Tx2)/2] 
 + [∆t / (∆x2) ] [(κy1Ty1 + κyTy1)/2 - 2(κy1Ty + 2κyTy + κy2Ty)/4 +( κyTy2 + κy2Ty2)/2] 
 + [∆t / (∆x2) ] [(κz1Tz1 + κzTz1)/2 - 2(κz1Tz + 2κzTz + κz2Tz)/4 +( κzTz2 + κz2Tz2)/2] (72) 
 
Tn = T + [∆t / (∆x  2) ]  
       { [ Dx1Tx1 - 2DxTx + Dx2Tx2 ] + [ Dy1Ty1 - 2DyTy + Dy2Ty2 ] + [ Dz1Tz1 - 2DzTz + Dz2Tz2 ]} (73) 
 
where: 



 Dx1 = (3κx1 + 2κx - κx2) / 4 ; Dx2 = (3κx2 + 2κx - κx1) / 4 Dx = (κx1 + 2κx + κx2) / 4 ; 
 Dy1 = (3κy1 + 2κy - κy2) / 4 ; Dy2 = (3κy2 + 2κy - κy1) / 4 Dy = (κy1 + 2κy + κy2 ) / 4 ; 
 Dz1 = (3κz1 + 2κz – κz2) / 4 ; Dz2 = (3κz2 + 2κz – κz1) / 4 Dz = (κz1 + 2κz + κz2 ) / 4 ; 
 
Although stability of the numerical solution of Eq. (73) is guaranteed by the Courant-Friedrich-Lewy (CFL) 
stability condition (∆t < 0.5 ∆x / Dmax),  it is important to note with the above formulation that some values of 
D can be negative, which reflects a dominating effect of the diffusivity gradient and can cause numerical 
instability. This problem is corrected by using more conservative values of D: 
 
 Dx1 = (κx1 + κx) / 2 ; Dx2 = (κx2 + κx) / 2 Dx = (κx1 + 2κx + κx2) / 4 ; 
 Dy1 = (κy1 + κy) / 2 ; Dy2 = (κy2 + κy) / 2 Dy = (κy1 + 2κy + κy2 ) / 4 ; 
 Dz1 = (κz1 + κz) / 2 ; Dz2 = (κz2 + κz) / 2 Dz = (κz1 + 2κz + κz2 ) / 4 ; 
 
The Dufort-Frankel scheme solves the temporal derivative (Tn – To)/2∆t by replacing (2DT) terms in Eq. (73) 
by (DTn + DTo).  Defining 
 

( ) 23/2 xtDDDa zyx ∆∆++≡   , (74) 

 
one can express this scheme, retaining the anisotropy (heterogeneity) of diffusivities: 
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Method for Solution of Convective Heat Flow. The differential equation is shown below: 
 

( ) TTg
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In Eq. (74) K represent parameters appropriate for either Darcy (Eq. 58) or Poiseuille (Eq. 64) flow. 
Numerical solutions of Eq. (74) are very sensitive to temperature gradients and prone to be unstable, unless 
explicit mass and momentum conservation are simultaneously satisfied. Alternatively by observing limiting 
boundary conditions, solutions to Eq. (76) can approximate the effects of convection in a fashion that 
numerically mimics effective diffusivity. 
 
Tn =T + [ ∆t / ∆2x ] [ ux (Tx1 - Tx2 ) + uy (Ty1 – Ty2 )+ uz (Tz1 – Tz2 ) ] , (77) 
 
For which the velocity vectors ux, uy, and uz are found through Eqs. (58 and 64) and stability is insured by the 
CFL stability used in Eq. (73).  
 
 



Method for Solution of Heat Sources/Sinks. By assuming an explicit temperature range over which 
crystallization/melting occurs, a constant latent heat of fusion/crystallization, and a linear relationship between 
crystal content and temperature over this range, an iterative solution is possible. For Heat calculations this 
simplification is represented by: 
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for which heat is expressed in kJ, Ql is the latent heat, cp is heat capacity, δT is an incremental change in 
temperature by conduction and convection (Tn – T from Eqs. 36 and 38), and ∆Tsl is the temperature 
difference between the liquidus and solidus. For Ql = 350 kJ/kg, cp = 1 kJ/kg-K, and ∆Tsl = 350 K, Eq. (76) 
states that for δT = two degrees of cooling by conduction/convection there is one degree heat added by 
crystallization. For these values, iterative solution of Eq. (78) results in addition of 350 kJ/kg of heat to the 
magma for cooling from the liquidus temperature to the solidus. 
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